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Abstract 

The resolution function of an X-ray triple-crystal 
diffractometer is calculated on the assumption that 
the resolution is controlled by the properties of 
the monochromating and analysing crystals. The 
expressions are then evaluated when these crystals 
have either a mosaic structure or when they are perfect 
flat crystals with a reflectivity controlled by the 
Darwin width. Within the Gaussian approximation 
for the Darwin curve, simple expressions for the 
resolution are then obtained both for a conventional 
X-ray source and for an X-ray synchrotron source, 
although the expressions differ in detail. The 
expressions are used to discuss the intensity obtained 
when a triple-crystal diffractometer is used to measure 
the integrated Bragg reflection intensity, the intensity 
associated with rods in reciprocal space and the 
intensity of diffuse scattering. 

1. Introduction 

Over the past few years X-ray scattering experiments 
have been performed to explore new areas in phase 
transitions and surface science. The high brilliance 
available with rotating-anode and synchrotron sour- 
ces has enabled experiments to be performed with a 
momentum resolution of ~10-4,Z~k -1. These experi- 
ments have mostly used a three-axis spectrometer, 
Fig. 1, with perfect or nearly perfect crystals as mono- 
chromator and analyser. Despite the high resolution 
available with nearly perfect crystals, it is still 
necessary to understand the resolution function if 
detailed experiments are to be performed, if reliable 
information about intensities is to be obtained, and 
if improvements are to be made in the experiments. 

The calculation of the resolution function of a 
neutron three-axis spectrometer has been carried 
through by several authors (Cooper & Nathans, 1967; 
Stedman, 1968; Bjerrum-MOller & Nielsen, 1970). 
The corresponding calculation for an X-ray three-axis 
diffractometer is in some ways simpler, and in other 
ways more difficult than for the neutron case. It is 
easier because only elastic scattering processes, in 
which the energy of the incident and scattered X-ray 
photons are the same, need to be considered. This is 
an excellent approximation for studies of the posi- 
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tions and motions of the atoms. The second sim- 
plification is that the beam divergences are largely 
controlled by the monochromator and analyser crys- 
tals, and not by Soller-slit collimators between the 
monochromator and detector, as they are in typical 
neutron experiments. In the X-ray case, slits are used 
to define the beams, but the resolution is only easily 
controlled if these slits do not control the angular 
divergence of the beams between the monochromator 
and analyser crystals at least in the scattering plane. 
If this is not the case the resolution becomes a com- 
plex interaction between real-space and reciprocal- 
space effects, and cannot be readily controlled or 
calculated. 

In the neutron scattering case the resolution was 
calculated for mosaic crystals with a mosaic spread 
which is assumed to have a Gaussian form. With 
X-rays the monochromator and analyser are often 
perfect crystals and dynamical diffraction theory 
(Zachariasen, 1945) must be used to describe the 
reflection at the monochromator and analyser. The 
scattering profile obtained from the dynamical theory 
differs from that given by the kinematical theory firstly 
because it corresponds more closely to an uncertainty 
in the plane spacing, instead of from misaligned 
planes, and secondly because the line shape is not 
Gaussian. This latter effect creates a non-Gaussian 
resolution function with large 1/02 tails which, in the 
dynamical scattering theory, arise from scattering by 

Monochromator 

,,o . ~ g _ ~  qM 
Source k=  

~Analyser 
. . . .  r/A 

Detector 

Fig. 1. A schematic diagram of the triple-crystal X-ray diffrac- 
tometer in real space showing the directions of the nominal wave 
vectors kM, kl, kF, kA and the deviations 3,0, 3,1, 3'2, 3,3 of a 
typical ray. 
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the surface of the monochromator or analyser. These 
give rise to long tails to the resolution function in 
particular directions in wave-vector space. Avoiding 
these tails is essential if weak diffuse scattering is to 
be studied close to Bragg reflections, and the direc- 
tions and origins of these tails are described in detail 
by Ryan (1986). 

In this paper we are concerned not with the tails 
of the resolution function, but with the central part. 
This was calculated before by Pynn, Fujii & Shirane 
(1983) and in principle involves a complex numerical 
integration using the results of dynamical theory for 
both monochromator and analyser. In this paper we 
adopt a more pragmatic approach and, as suggested 
by Pynn et al. (1983), approximate the results of the 
dynamical theory by a Gaussian of the appropriate 
width, and then hope that after this has been con- 
voluted with the other less-restrictive resolution ele- 
ments, the Gaussian form is an adequate approxima- 
tion. This has the advantage that we can then obtain 
detailed and relatively simple expressions for the 
resolution function, which are very useful in practice. 
In § 2 the expressions for the resolution function of 
a three-crystal diffractometer are obtained for both 
mosaic crystals and perfect crystals as mono- 
chromator and analyser. The former are useful when 
relaxed collimation or higher intensity is required. 
We also develop expressions for when the source is 
a line spectrum, from say a rotating-anode source, 
and when it has a continuous spectrum, as arises from 
a synchrotron source, in which case the pre-mono- 
chromator collimation determines the resolution. In 
this section we also give expressions for the variations 
in the intensity due to the polarization and absorption 
factors in the scattering cross section for a typical 
scattering geometry. 

The result of an experiment is a convolution of the 
resolution function of the instrument with the scatter- 
ing function, S(Q),  where Q is the wave-vector trans- 
fer in the experiment. In general this is a complicated 
integral, but there are several special cases which can 
be evaluated and which are of importance. One 
example is the determination of the intensity of Bragg 
reflections. The usual technique is to employ an open 
detector when the formulae for the integrated 
intensities are well known, but this is not the case 
when an analyser is used. The possible procedures 
and the relevant formulae for the integrated 
intensities are given in § 3. Another simple example 
which can be evaluated analytically is that of a line 
of scattering in reciprocal space. This case is also 
discussed in § 3. 

In § 4 we show how the results obtained in § 2 are 
modified if more complex monochromators or analy- 
sers are used. In particular we discuss the resolution 
obtained when asymmetrically cut crystals and 
double monochromators are used. The results of the 
paper are summarized and discussed in a final section. 

2. The resolution function 

The calculation of the resolution function for an X-ray 
three-crystal spectrometer will follow the method and, 
as far as possible, the notation of Cooper & Nathans 
(1967). A schematic diagram of the idealized form of 
the spectrometer is shown in Fig 1, and a correspond- 
ing reciprocal-space diagram in Fig. 2. The spec- 
trometer resolution is assumed to be controlled in the 
scattering plane by the monochromator and analyser 
crystals, which are further assumed to be symmetri- 
cally cut single crystals. Extensions to asymmetrically 
cut crystals and to double monochromators are dis- 
cussed in § 4. In addition to the monochromator and 
analyser crystals, the resolution also depends on the 
wavelength spread of the X-rays. This is determined 
in an experiment with a conventional source by the 
line width of the X-ray line chosen, and in an experi- 
ment with a synchrotron source by the effective 
angular divergence between the monochromator and 
source. 

The nominal wave vectors of the X-ray photons 
from source to detector kM, k~, kF and kA are all of 
equal magnitude k, and the nominal wave-vector 
transfer to the specimen is 

Qo= k~--kv, ]Qo] = 2k sin 0. (2.1) 

The corresponding wave vectors of a particular 
photon are k,,, ki, k s and ko, and deviate from the 
nominal ray by angles of 3'0, Yl, Y2 and Y3 in the 
scattering plane, and by 60, ~1, 6~ and 33 out of the 
scattering plane. Since the energy of the X-ray photon 
is, within error, unchanged in these scattering experi- 
ments, 

Ikml = Ik,I =lkfl =lkol. 

The effect of a mosaic structure to the monochromator 
is that reflection will occur even if the angles of 
deviation from the nominal rays ~/o and -Yl are 
unequal (Fig. 1), while for perfect crystals 3,0 = - y l ,  

k ~  
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Fig. 2. A wave-vector space diagram of the triple-crystal diffrac- 
tometer shown in Fig. 1. "rM and x A are the wave-vector transfers 
to the monochromator and analyser and Qo the wave-vector 
transfer to the sample. 
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and the reflectivity is determined by the dynamical 
theory, which for thick non-absorbing crystals gives 

where 

P(y) = 1 lYl < 1 

P(y)=y-(y2-1)'/2 lYl > 1 
(2.2) 

y=[y , - yo+(2Ak / k ) t an  OM]/2DM. (2.3) 

2DM is the Darwin width of the reflection 
(Zachariasen, 1945) and Ak=lkml--lkMI. Although, 
as explained by Pynn et al. (1983), the calculation of 
the resolution function can be performed with the 
Darwin function, it is then necessary to make numeri- 
cal calculations for each specific case. A less-accurate 
but more tractable approach is to approximate (2.2) 
by a Gaussian form, when the reflectivity of the mono- 
chromator is given by 

P(Yo, yl, dk)= PM exp {-½[(Yo+ Yl)/2rl~] 2} 

x exp (--½ {[ Y l -  Yo 

+ 2 a k ( t a n  OM)/k]/2DM}2), (2.4) 

and the corresponding expression for the analyser is 

P(Y2, Y3, A k ) :  PA exp {-½[(Y2+ "y3)/2~'/A] 2} 
xexp  ( -½{Iv2-  Y3 

- 2Ak(tan 03)/k]/2DA}2). (2.5) 

These expressions emphasize the difference between 
the diffraction of mosaic crystals when effectively 
DM ~ 0 and Yo = 3'1 + (2Ak/k) tan 0M, and ideal crys- 
tals when rim ~ 0 and 3'0 = -Y~. Although in principle 
it is possible to carry through the calculations with 
the full expressions for the reflectivity of mono- 
chromator and analyser [(2.4) and (2.5)], the resulting 
formulae are complicated. We shall therefore make 
use of the two limits which are most frequently of 
use in practice; of either ideal crystals such as fiat Si 
or Ge monochromators for which r/M < DM, and 
mosaic crystals such as bent Si or Ge or graphite 
crystals for which r/M > DM. 

In addition to the contribution to the resolution 
from the monochromator  and analyser, there is also 
the effect of the line width of the X-ray source for 
conventional-source experiments. The probability of 
different wavelengths is independent of the angles 3'0 
and 8o but is sharply peaked in wave vector near kM. 
We shall therefore write the normalized wave-vector 
dependence of the source as 

Ps(Ak)=(27r)-UE(ko.) -~ exp[-½(Ak/ko.)2], (2.6) 

where o. is given by the line width of the characteristic 
X-ray line. 

If the source is a synchrotron, the resolution is 
determined at least in part by the emittance of the 
synchrotron source and the effective collimation 

between the synchrotron and the monochromator.  
These are assumed to have a Gaussian form 

Ps=exp[-½(y2/a2+y~//3~)], (2.7) 

and similar expressions are used for the out-of-plane 
collimations between the monochromator  and detec- 
tor as defined by angles/31,/32 and/33. We have now 
defined all the iesolution elements of the spec- 
trometer, and can use the method of Cooper & 
Nathans (1967) to evaluate the resolution function. 

The in-plane resolution function 

In the Gaussian approximation the resolution func- 
tion of the triple-crystal spectrometer for a wave- 
vector transfer Qo is given by a Gaussian form 

R(Q0+ A Q ) =  Ro exp [-½(M12 AQ 2 + 2M12 AQx AQy 

+ M2 2 2 AQy+ M33 AQ2)], (2.8) 

where AQx is the component of the resolution func- 
tion parallel to Qo, AQz is the component out of the 
scattering plane, and AQy is the third orthogonal 
component,  as defined in Fig. 2. The contributions 
to the in-plane and out-of-plane resolution function 
are quite separate, and so in this subsection we discuss 
only the in-plane terms and their contribution to Ro 
and leave to the next subsection the out-of-plane 
terms. 

The in-plane contributions to the scale factor R0 
are (Chesser & Axe, 1973) 

R, = PMPAJRox, (2.9) 

where PM and PA are the efficiencies of mono- 
chromator and analyser. J is the Jacobian of the 
transformation from angles y~ and 3'2 to AQx and 
AQy, J = (k 2 sin 20) -1, and R0x arises from perform- 
ing the integral over Ak and is 

Rox = (2rrko.)-'(A') -'/2 (2.10) 

for a continuous source, while A' depends on the 
resolution and angle of scattering as specified below. 
The expressions for the parameters A', MI1, M12 and 
M22 can now be evaluated for various configurations. 

( a) Conventional source - perfect crystals. 

A'= (tan 0 - t a n  OA)2/D2 +(tan 0- tan  OM)2/D 2 

+ 1 / 0  .2 (2.11) 

M,,  = (4A' k 2 cos 20)- ' (M'~,  + M~,) 

M,2= (4A ' k 2 cos 0s in  O)-'(M'~2+ M~2) (2.12) 

M22 (4A' k 2 sin 2 0) -1 x c = (M2z+ M22), 

where M~I depends solely on the properties of the 
monochromator  and analyser, and M ~  on the line 
width of the source. The detailed expressions for the 
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M x terms are 

M~'~ = (tan 0M--tan Om)2/DE D2A 

M~'2 = (tan 0^4- tan  0a) 
(2.13) 

x (2 tan 0 - tan 0M -- tan OA)/DE D 2 

M~2 -- (2 tan 0 - t a n  0M --tan OA)2/DE DZA, 

while the corresponding expressions for the depen- 
dence on the line width o- of the source are 

M~, = M~2 = (1 /D~  + 1 / D E ) / 0  .2 
(2.14) 

M~2 = (1 /D  E - 1/DZa)/o-2. 

These results are further simplified if the mono- 
chromator and analyser are identical and used in the 
focusing configuration OM = OA (Fig. 1), when 

M~, = M~2 = M~2 = 0. 

The resolution function then has its principal axis 
parallel and perpendicular to Qo, and furthermore 
the expression for M ~  is independent of Qo or 0 and 
directly proportional t o  1 / o  -2 . The resolution is 
especially good when, in addition, 0 = 0M. In this 
case A ' = l / o -  2 and M~2=0,  while M ~ = M ~ 2 =  
2/0"2D 2 .  The resolution is then given by 

M,,  = [2DE(cos  2 0)k2] - '  

and 

M22 = [2DE(s in  2 0)k2] - '  

Both of these are independent of the line width o-, as 
is well known for the perfectly focusing geometry. 

( b ) Conventional source - mosaic crystals. In this 
case the expressions for the elements of the resolution 
function are identical with those for perfect crystals, 
except that ~/M replaces DM, and ~/a replaces Da. 
This is because the monochromator for a given direc- 
tion of the beam incident on the specimen, yt, gives 
rise to different incident directions Yo for mosaic and 
perfect crystals. Since, however, there is no effective 
collimation before the monochromator or after the 
analyser, the resolution is of the same functional form 
in both cases but with ~TM and ~/A replacing DM and 
DA. 

( c) Synchrotron source - perfect crystals. 

A' = (tan 0 - tan OA)2/D2A + (tan 0 -- tan 0M )2 /DE 

+ (1/aoZ) tan 2 0. (2.15) 

The expressions for MI~, M12 and M22 are similar to 
those of (2.12)-(2.14) except that 

M ~  = [(tan 2 0M/DE)  + (tan 20A/DZA)]/a 2 

M~2 = [(tan 2 0M/DE)  
(2.16) 

+ t an  0A(tan 0A- t an  0)/D2A]/ag 

M~2 = [(tan 2 0M/D E) + (2 tan 0 - t a n  0A)2/D2]/ag.  

These expressions are only slightly simplified in a 
symmetric arrangement with 0M = OA and DM = DA. 
The resolution function in this case does not have 
one of its principal axes parallel to Qo, because M~2 
is in general non-zero. Nevertheless, since ao z is 
usually large compared with D E ,  by far the largest 
component of the M's  is M~2 , unless 0 = 0M. Con- 
sequently one of the principal axes of the resolution 
matrix will be at least approximately along Qo. 

( d) Synchrotron source - mosaic crystals. 

A ' =  (tan 0 - t a n  OA)2/~72A+(tan 0 - t a n  0M)2/r/E 

+ (tan 0 - 2  tan OM)2/a~ (2.17) 

M ~  = [(2 tan 0M --tan 0A)2/r/E + (tan 2 0^4 ) / r / E ] / a o  2 

M~2 = {4(tan 2 0 a - t a n  2 OM)/a2o 

+ [tan 0A(tan OA--2 tan 0) 

+4  tan 0M (tan 0 - t a n  0M)]/r/~ (2.18) 

+ ( t an  20M)/ 2 2 nM}/c~o 
M~2 = [(2 tan 0 - 2  tan 0M--tan 0A)2/r/2A 

+ (tan2 0M)/ 2 2 nM]l~o. 
I f  a symmetric configuration is used then the 
expressions are somewhat simpler: 

M~, = 2(tan 20M)/a2ortE 

M~2 = 2(tan 0M)(tan 0 - t a n  OM)/ag~7 2 (2.19) 

M22C = 2(2 tan 2 0 +'5 tan 2 0M -- 6 tan 0 tan 0M)/a0r/M.2 2 

AS with the perfect crystals, the resolution matrix 
does not have one of its principal axes along Qo. 

Although these derivations have been given with 
either perfect or mosaic crystals for both mono- 
chromator and analyser crystal, the results can readily 
be generalized to apply to experiments with one of 
each. In the case, for example, of a perfect mono- 
chromator but mosaic analyser, the results are given 
by (2.11)-(2.16) of parts (a) or (c) but with D A 

replaced by r/A. 

The out-of-plane resolution 

The resolution of the X-ray triple-crystal spec- 
trometer perpendicular to the scattering plane is iden- 
tical to that of the neutron spectrometer. We can 
therefore take over the results of Cooper & Nathans 
(1967) as corrected, for example, by Chesser & Axe 
(1973). The contribution to the scale factor Ro is Rv, 
where 

Rv=[(2~r)~121k]{fl~/[fl~+(271'~ sin 0M)2]} ~/2 

X{ 2 2 tiff[/33 + (2 ~ ~ sin 0A)2]}'/2( a,~ + a,2) -'/2. 
(2.20) 

The out-of-plane collimations are /3o, . . . /33,  and the 
out-of-plane mosaic spread of the monochromator 
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and analyser are r/~ and r/~, respectively, and are 
zero if the crystals are perfect. The factors all and 
a~2 are given by 

a,~ = [ 4 ( r / ~ )  2 sin 0 2 + f12]-~ + fl~-2 

and (2.21) 

a~2 = [4 sin 20A(rl'A)2+flE]--l+fl22. 

The out-of-plane element of the resolution matrix, 
M33 of (2.8), is 

M33=(1/k2)alla12/(a11+a12). (2.22) 

It is very frequently the case that the mosaic spreads 
r/~, and r/~ are negligible when 

Rv=(2orlk)l/2(1/fl2+ 1/31+ 1/322+ 1/13]) - '/2 

and 

(/302 + 1312)(13~ + 13;2) 
M33 = k2(1302 + 1312 + 13;2 + 1332 ). 

These results are simpler than the in-plane resolution 
in that they are independent of the angle of scattering, 
0, and constant for a given spectrometer configur- 
ation. 

Polarization and absorption 

The radiation emitted by a conventional source is 
unpolarized, and so it is necessary to consider the 
components of the polarization both in and perpen- 
dicular to the scattering plane. The polarization 
dependence of electric dipole scattering then gives a 
factor of one for the out-of-plane polarization and a 
reduced factor for the in-plane component so that 
the total polarization factor is 

Rp = (1 +cos 2 20M cos 2 20 cos 2 20A)/2. 
(2.23) 

When perfect crystals are used polarization effects 
also influence the reflectivity of the monochromator 
and analyser. The Darwin widths, DM and DA, are 
dependent upon the polarization, and are reduced by 
cos 20M and cos 203 for the in-plane component com- 
pared with their values for the out-of-plane com- 
ponent. This means that the intensity is given by two 
superimposed components with different widths, and 
whose intensities are given by ½ for the out-of-plane 
polarization and by the product of cosine factors for 
the in-plane component. If, furthermore, the mono- 
chromator or analyser are not cubic crystals, the X-ray 
refractive index for the two polarization components 
is different, giving slightly different Bragg angles, and 
so the centres of the two resolution functions are 
slightly displaced from one another. Clearly it is not 
advisable to use very anisotropic crystals as mono- 
chromators or analysers. 

The beam from a synchrotron is polarized in the 
plane of the direction in which the electrons have 

been accelerated, usually horizontal. The spec- 
trometer is then preferably aligned vertically when 
only the out-of-plane polarization component is pres- 
ent and there are no polarization corrections, Rp = 1. 
Sometimes it is more convenient for the spectrometer 
to be aligned in the horizontal plane, when the 
appropriate expressions are those of the in-plane 
polarization component, 

Rp = cos 2 20M cos 2 20 cos 2 20A.  (2.24) 

In neither case, however, are there the complications 
arising from the two resolution functions of different 
widths which occur for a conventional source. 

The effect of absorption in the sample on the scat- 
tered intensity is dependent upon the size and 
geometry of both the incident beam and the sample 
crystal. Experimentally we find it is most convenient 
in these experiments to use the extended-face 
geometry, in which the sample has a large flat face 
which intersects the whole of the incident beam. The 
sample is also sufficiently thick that the incident beam 
is wholly absorbed in the sample. The effect of the 
absorption is then to modify the intensity by the factor 

RA = sin ( 2 0 -  t#)/[sin ~ + s i n  ( 2 0 -  ~)], 
(2.25) 

where ~b is the angle in the scattering plane between 
the direction of the incident beam and the fiat face 
of the sample. The angular dependence arises because 
when the incident X-ray beam propagates in the crys- 
tal close to the surface, ~b small, the scattered beam 
more readily escapes from the sample than if the 
scattering occurred at considerable depth in the 
crystal. 

X-ray experiments can also be used to study thin 
films and surface effects. In these cases the intensity 
is proportional to the area of the surface illuminated 
by the X-ray beam, which is dependent upon the 
angle ~ between the incident beam and the surface, 

R, = (sin ~) - ' .  (2.26) 

Of course, when ~b becomes small the illuminated 
length of surface is very large, and extremely long 
samples must be used if (2.26) is to be correct. 

3. Resolution widths and intensities 

Resolution widths 

The resolution in the scattering plane is defined by 
the locus of AQx and AQy such that 

0.5 = exp [-½(MI~ AQ 2 + 2M12 AQx AQy 

+ M22 AQ2y)]. 

In the case of a conventional source with a symmetric 
arrangement of monochromator and analyser M~2 = 
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0, and the resolution is defined by (FWHM) 

.4., = 212(ln 2 ) /M, , ]  '/2 

=4k  cos O[2A' In 2/(M'~, + M~,) ]  '/2 

and 

(3.1) 

Zay = 212(ln 2)/M22] '/2 

= 4k sin 0[ 2A' In 2/(M~2 + M~2) ],/2, 

w h i l e  t h e  0 d e p e n d e n c e  o f  t h e  s ca l e  f a c t o r ,  Ro ,  is 
c o n t a i n e d  in  t h e  f a c t o r  

I~ = 1/sin 2O(A') '/2. (3.2) 

These expressions have been calculated as a function 
of Qo, and the results are shown in Figs. 3-5. In Fig. 
3 the parameters are chosen for a Cu Ka, source, 
A = 1 - 5 4 0 5 ~ ,  o - = 3 . 5 x 1 0  -4 (FWHM) and for a 
S i ( l l l )  monochromator and analyser with a Darwin 
width D~  =33.6 txrad (FWHM). The results show 
that the longitudinal resolution width A is approxi- 
mately ten times the transverse width, that both 
increase for large Qo, but that za, has a minimum at 
the focusing position when 0 = 0M. 

In Fig. 4 the monochromator and analyser are 
chosen to have mosaic spreads of 0.02 °, 0.35 mrad 
(FWHM). The effect of this is to make the resolution 
function more symmetrical at least for larger Qo with 
Ax approximately independent of Qo. Ax is barely 
any larger at large Qo than with the perfect crystals 
(Fig. 3) but Zay is roughly ten times larger for all Qo. 

In the calculations shown in Fig. 5 the mosaic 
spread was increased to 0.2 °, 3.5 mrad (FWHM) so 

that the conditions are characteristic of those when 
pyrolytic graphite crystals are used. Zay has a similar 
form to that shown in Figs. 3 and 4 but is ten times 
larger again, zax now decreases with increasing Qo 
and at larger Qo > 5 A - '  is smaller than Ay. 

Similar calculations for a synchrotron source with 
a small angular emittance for a synchrotron of 
0 .2mrad (FWHM) are shown in Figs. 6-8. The 
expressions are more complicated, because M,2 is 

...-. 
..< 

' I  ' ' Y 

/ 

/ 
/ 

/ /  
/ r a y  

0 _V__ . . . . . . .  1 _~-_ I 
0 2 4 6 8 

O0 (A '1 

Fig. 4. The resolution function, as in Fig. 3, except that the mono- 
chromator and analyser have mosaic spreads (FWHM) 
of 0.02 ° . 

? 1 
o 

,/ 

/ !  

k" 
0 2 4 6 

o0 ( , , I - ' )  

2 

Fig. 3. The width (FWHM) of the resolution function for Cu Kat 
radiation, A = 1.54/~, and Si(111 ) monochromator and analyser, 
DM =0"002 ° (FWHM). A x is the width parallel to Qo, Zay the 
perpendicular width and Is the angular dependence of the scale 
factor. 

0 2 4 6 8 

Oo (A ' )  

2 

1 

Fig. 5. The resolution function, as in Fig. 3, except that the mono- 
chromator and analyser have mosaic spreads (FWHM) of 0-2 °. 
The }t ! - h 2  line gives the separation along Qo of Cu Ka~ and 
Ka2 lines. 
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non-zero, and so the principal axes of the resolution 
function are not parallel and perpendicular to Qo. 
We have therefore calculated A1 and za2 as the prin- 
cipal axes of the resolution ellipse, and/3 is the angle 
between A1 and Q0. 

Fig. 6 shows the calculations for an Sit111) mono- 
chromator and analyser. The angle/3 is always very 
small, which shows that the resolution ellipse is orien- 
ted largely along Q0. za2 is very similar to Ay of Fig. 
3 because the transverse resolution is largely con- 
trolled by the monochromator and analyser. The 
longitudinal resolution A1 is similar to Ax at the 
focusing wave vector 0=0M ( Q o = 2 A  -1) but is 
approximately 2½ times larger with the synchrotron 
source than with the conventional source. This is 
because the angular emittance of the synchrotron 
allows a larger spread in zak from the monochromator 
than that provided by the line width of the Cu Kc~l 
conventional source. If a larger angle at the mono- 
chromator was used, say Si(333) planes, the resol- 
utions would be very similar for a synchrotron and 
a conventional source. 

Figs. 7 and 8 show the corresponding calculations 
for mosaic crystals with -qM =0.35 and 3.5 mrad 
(FWHM). The results show that the principal axes 
of the resolution function are dependent on Qo. In 
both cases, the width largely transverse to Qo is 
roughly comparable to that obtained from a conven- 
tional source, while the largely longitudinal width is 
much greater. The scale factor Is is also very strongly 
peaked as a function of Qo. 
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Fig. 6. The resolution function with a continuous source with 
pre-monochromator collimation of  0.012 ° FWHM and A = 
1.5/~. A 1 and A 2 are the widths (FWHM) of the principal axes 
and/3 the angle between A 1 and Q0. Is is the angular-dependent 
scale factor. The monochromator and analyser are Si (111) 
planes, DM = 0"002 ° (FWHM).  

Measurement of Bragg reflection intensities 

The relative intensities of the Bragg reflections pro- 
vide information about the crystal structure of the 
sample. Suppose the scattering cross section is given 
by 

S ( Q ) =  Fs~ (Q- ' r ) ,  (3.3) 

where x is a reciprocal-lattice vector of the sample. 

I I 1 -- I I 

2o ~--------2 
~ 0 -  

1 0 -  

< 

o 
~ 5 -  

<i 

I 

0 2 4 6 8 

oo (~-') 

Fig. 7. The resolution function, as in Fig. 6, except that the mono- 
chromator and analyser have mosaic spreads of  0.02 °. 
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Fig. 8. The resolution function, as in Fig. 6, except that the mono- 
chromator and analyser have mosaic spreads of  0.2 °. 
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One way of determining the structure factors F8 is 
to record the intensity when the spectrometer is set 
with Qo = r. The intensity is then given by all the 
amplitude factors 

Ie ( ' r )=  R, RvRpRAFB. (3.4) 

The dependence of the intensity on the polarization 
and absorption factors Re and RA [(2.23)-(2.25)] are 
easily evaluated, while Rv [(2.20)] is independent of 
the scattering angle. The factor R~ [(2.9)] is, however, 
more complicated, and depends simply on 2 0 through 
the J factor and in a much more complex way through 
Rox and A'. The latter is particularly complicated, 
and, as shown in Figs. 3-8, the 0 dependence is 
dependent on the resolution of the spectrometer and 
varies rapidly with 0. This way of determining the 
intensities F8 is also unsatisfactory because it is 
difficult to find the maximum intensity. 

The usual method of determining the Bragg struc- 
ture factors is by measuring the integrated intensity 
when the spectrometer is controlled so as to sweep 
the resolution function through the Bragg reflection. 
In the study of crystals with incommensurate modula- 
tions of the basic structure, it is convenient to observe 
the intensities of the incommensurate satellites by 
scanning the wave-vector transfer Qo along the lines 
in reciprocal space parallel to the incommensurate 
wave vector. If the angle between the scanning direc- 
tion and the wave-vector transfer is a, the integrated 
intensity is 

II('r)=(2zr)~/ER, RvReRAM-1/2FB, (3.5) 

where 

M = M1, cos 2 a +2M12 cos a sin a + M22 sin 2 a. 

This expression is far from simple and depends on 
both 0 and the resolution elements. Clearly such 
measurements can only be quantitatively analysed to 
obtain the intensities F~ for a wide range of different 
reciprocal-lattice points x, if very careful and detailed 
resolution calculations are performed to correct for 
the 0 and a dependence of 11(x). 

The results do simplify if c~ = 0 ° when the scanning 
direction is parallel to Qo, because M'~1+M[~ is 
independent of 0 [(2.13), (2.14) and (2.16)]. The 
integrated intensity of the Bragg reflections is then 
given by 

Ix(x) = PMPARIRpRARv 

x 2k(cos O)A'(M~I + M~)-I/2FB, (3.6) 

where, in the case of perfect crystals and a conven- 
tional source, (2.13) and (2.14) give 

M~I + M[1 = (tan 0M - t a n  0A)2/D~a D 2 

+ ( l / D 2 +  1/D~)/o "2, (3.7) 

which is independent of angle 0. This is therefore 
the most satisfactory way to measure the relative 

intensities, FB, as the dependence on 0 does not 
depend on the resolution function, because the A' 
cancels the A' in the factor R,. It is worth commenting 
that this result is a particular case of a more general 
result, that even if the triple-crystal spectrometer has 
significant collimation between the sample and the 
analyser, or the analyser and the detector, the 0 
dependence of the relative intensities measured with 
a scan for which a = 0  is given by (sin O ) - I R p R A  . 
This result is similar to the well known result for a 
0/20 scan of a two-crystal diffractometer, except that 
the integrated intensity is usually expressed as an 
integral over 0; since dQx = 2k cos 0 dO, the intensity 
integrated over the angle 0 is given by (3.6) divided 
by 2k cos 0, which is then equivalent to the usual 
expression. 

When the spectrometer has perfect crystals for the 
monochromator and analyser, the above procedure 
is difficult to follow because of the necessity of having 
the good transverse resolution, Figs. 3 and 6, aligned 
so that the scan of Qo passes exactly through the 
Bragg reflection, and indeed the integral is incorrect 
if the sample has a mosaic spread larger than this 
narrow resolution width (Axe & Hastings, 1983). It 
is therefore more convenient to integrate the Bragg- 
reflection intensity by scanning along the transverse 
direction Qy. The resulting variation in the integrated 
intensity is then given for a conventional source by 

l y ( r )  = [ P M P A R p R A R v / ( 2 , 1 r ) I / 2 o - k  2 cos 0] 

x (M'~2+ M~2)-'nFB. (3.8) 

This expression depends on 0 in a more complex way 
than that obtained if the diffractometer was used in 
the conventional manner with an open detector. 
Equation (3.8) is compared with that obtained with 
an open detector in Figs. 9 and 10. Both spectrometers 
are assumed to have the same vertical collimation 
and we have omitted the polarization and absorption 
corrections and taken PA = 1. The results for a conven- 
tional source, Fig. 9, show a very marked difference 
in the intensities when the analyser has a small 
Darwin width or small mosaic spread, but the relative 
intensities are at least roughly constant when an 
analyser with a broad mosaic spread is used. 

The results obtained for a continuous synchrotron 
source show the ratio of the intensities is a strongly 
peaked function of [Q0[ for a perfect analyser and 
that this peak only slowly broadens as the mosaic 
width of the monochromator and analyser increases. 

Figs. 9 and 10 show very marked variations in 
intensity as a function of Q0. Clearly these corrections 
are essential if the structure factors F~ are to be 
reliably measured with transverse scans. 

An alternative approach, which is by far the most 
satisfactory, is to measure the integrated Bragg reflec- 
tion by performing a double integral over Qx and Qy. 
There are then no errors due to possible inadequate 
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alignment of the spectrometer, and more significantly 
the result includes the effects of the dynamical broad- 
ening of the sample Bragg reflections as well as any 
mosaic effects. The integrated intensity is then given 
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Fig. 9. The  ratio o f  the integrated intensity observed in a transverse 
scan across a Bragg reflection to that  observed with an open  
detector ,  as a funct ion o f  wave-vector  transfer.  The  incident  
wave vector  is Cu K a  t and the m o n o c h r o m a t o r  and  analyser  
are varied with (a )  D ~  = 0-002, (b)  7/~ = 0.02 and (c) ~ -- 0-2 °. 
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Fig. 10. The ratio of the integrated intensity observed in a trans- 
verse scan across a Bragg reflection to that observed with an 
open detector. The source is assumed to be continuous with a 
pre-monochromator collimation of 0.012 ° (FWHM), h = 1.5 °. 
The results are shown for different monochromator and analyser 
crystals; (a) DM =0"002, (b) 7/M =0.02 and (c) 7/~ =0.2  °. 

by 

Ixy ( T) = 2 ~rR, RvRpRA ( M ~  M22 - M22) -~/2 FB. 
(3.9) 

For a conventional X-ray source, this can be sim- 
plified by the use of (2.11)-(2.14) to give 

Ixv ( ~') = R v Rp RA ( PM PA/ kcr ) DA DM F~. 

This result is independent of 0 apart from the polariz- 
ation and absorption factors Rp and R A. The corre- 
sponding result for a synchrotron source with perfect 
crystals as monochromator and analyser is 

Ixy (,r) = (27r)I/2RvRpRAPMP A 

X(aoDAD~FB/tan 0M), (3.10) 

and with mosaic crystals 

Ixy (~') = ~rl/2RvRpRAPAPM(aO~TA/tan OM) 
x (1/~7~ + 1/a2)-IFB. (3.11) 

Both of these results are similar to those for a conven- 
tional source, in that they are independent of 0 apart 
from the absorption and possibly the polarization 
corrections. 

Intensity from a rod of scattering 

Triple-crystal X-ray diffractometers are particularly 
suited to study the scattering from surfaces and inter- 
faces. They have been used to study the scattering 
from ferroelectric domain walls (Andrews & Cowley, 
1986), the scattering arising near Bragg reflections 
from the termination of the crystal lattice (Andrews 
& Cowley, 1985; Robinson, 1986), and the X-ray 
reflectivity of surfaces (Cowley & Ryan, 1987). In all 
of these cases the scattering is confined to a line in 
reciprocal space perpendicular to the interface, and 
relatively slowly varying in intensity along the scatter- 
ing rod. If these rods are aligned in the scattering 
plane, the intensity when the spectrometer is set with 
a wave vector Qo on the rod is given by a one- 
dimensional integral over the resolution function and 
along the direction of the rod. If the intensity along 
the rod can be treated as constant this intensity is the 
Ii(Qo) of (3.5), with a the angle between Qo and the 
rod of scattering. This result is, however, dependent 
on the scattering geometry in a complex way. It is 
experimentally more satisfactory to measure the 
integrated intensity by varying the wave vector trans- 
versely through the rod of scattering. The integrated 
intensity is then given by Ixy(Qo) [(3.9)-(3.11)], pro- 
vided that the interfaces are uniformly distributed 
throughout the volume of the sample, as indeed they 
may be for ferroelectric domain walls. As explained 
above, this result then depends on the scattering 
geometry only through the polarization and absorp- 
tion factors RA and Rp, and there is no Lorentzian 
factor as assumed by Robinson, Waskiewicz, Teng & 
Bohr (1986). 
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In many experiments the interface of interest is the 
surface of the crystal, and then the absorption correc- 
tion is inapplicable but is replaced by the surface 
factor Rs of (2.27). This factor is of special importance 
when g/ is small, as it is when the reflectivity curve 
is being determined for small angles 0. The Fresnel 
formula for the X-ray reflectivity gives at angles 0 
much larger than the critical angle 0c a reflectivity 
proportional to 0 -4 . This angular factor arises in the 
kinematical theory of X-ray diffraction because the 
Fourier transform of a step or sharp surface electron 
density profile is proportional to 0 -2. With a sym- 
metric geometry g/= 0 and the surface factor R~ = 0-1. 
Finally, the Fresnel derivation of the reflectivity 
assumes that the sample is scanned in angle rather 
than transverse wave vector, when Qy=2kOAg/, 
giving a further factor of 0 -1 for the integrated 
intensity observed by scanning through the rod in 
constant angular steps. 

The diffuse scattering 

One of the applications of the triple-crystal spec- 
trometer is the study of diffuse scattering. If this 
scattering has a uniform structure factor So over the 
volume of the resolution function the observed 
intensity is 

Ixyz(Qo) = Ixr(Qo)(Rw/Rv)So, (3.12) 

where Rw is the integral over the vertical resolution 
function 

Rw = 2"rr13ofl,/32f13[13] + [3~ + 4( 77 ~ )2 sin 20M ] - , /2 

X [/32+f12+4(r/~)2 sin20A] -'/2. (3.13) 

This result is independent of 0 apart from the absorp- 
tion, RA, and polarization, Rp, corrections. 

4. Other monochromators 

Asymmetrically cut monochromators 

The use of asymmetrically cut monochromators 
enables the beam to be reduced or expanded in width. 
Although this feature does not alter the resolution in 
reciprocal space, the resolution is altered in the case 
of perfect crystals by the changed relationship in the 
dynamical theory between the deviation angles 3'0 
and yl. For symmetrically cut perfect crystals 3'o = 
-y~ [(2.4)], because the deviation in the wave-vector 
transfer to the monochromator is perpendicular to 
the surface of the crystal, which for symmetrically 
cut crystals is parallel to the reflecting planes. When 
the crystal is asymmetrically cut so that the reflecting 
planes are at an angle g/M tO the surface of the crystal, 
and the angle of incidence to the surface is 0M -- g/M, 
the corresponding relation between g/0 and g/~ is 

(Zachariasen, 1945) 

_( tanOM-tang/M) 
3'o= \ ~an OM + tan ~MM Yl 

2Ak tan OM tan g/M 
-t 

k (tan 0M +tan g/M)" 
(4.1) 

The probability of reflection at the monochromator 
is then given by 

P(yo, y,, Ak) = PM exp { - ½ [ y , / D ~  

+ Ak(tan OM)/kD'M]2}, (4.2) 

where the effective Darwin widths are 

tan 0M + tan g/M) I12 
D'M = \~an OM --tan ~ DM. (4.3) 

The analysis can then be carried through in exactly 
the same way as for a symmetrically cut mono- 
chromator. In the case of a synchrotron source the 
relation between 3'0 and Yl [(4.1)] shows that the 
expressions involving the collimation a0 are altered 
as well as these involving DM. The final expressions 
are considerably more complex than those for sym- 
metrically cut crystals and so will not be given in 
detail. The general features are, however, that as g/M 
increases the effective resolution elements increase, 
while if g/M is less than 0, and particularly as it 
approaches the limiting case of --0M, the resolution 
elements tend to zero and the spectrometer has much 
improved resolution but a very low intensity. 

Double monochromators 

Double monochromators (Fig. l l a )  are useful 
because the wavelength can then be scanned while 
keeping the sample in a constant position. Within the 
Gaussian approximation, which is appropriate for 
mosaic crystals, the effect of a non-dispersive double 
monochromator with no collimation between the 
monochromators (Fig. 11 a) is that the probability is 
the product of the probability of the two mono- 
chromators. This is then equivalent to an effective 
mosaic spread 

n~  = [ ( I I  riM,) 2 + (11nM2)2] - '  

Within the Gaussian approximation a similar result 
can be obtained for perfect crystals with 

D ~  = [(1/DM,) 2 + (11 DM2)2] -1 

The effect on the resolution produced by a double 
monochromator may be different from this because 
of the non-Gaussian form of the Darwin curve. In 
particular, because the central part of the Darwin 
function for non-absorbing crystals is more square- 
topped than a Gaussian, the effective Darwin width 
of the double monochromator may be larger than 
obtained by the convolution of two Gaussians. 
Secondly, and in contrast, the long tails of the Darwin 
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function are cut off much more rapidly by the double 
monochromator, so the Gaussian approximation may 
well be a better approximation for a double mono- 
chromator than for a single monochromator. 

Finally, we discuss the case of a dispersive double 
monochromator (Fig. l lb),  or, in practice, the 
double-double monochromator of Fig. l l (c ) .  The 
results for mosaic crystals are the simple convolution 
of the Gaussian forms for each of the individual 
crystals, giving the same forms but with a different 
effective mosaic spread. With two identical perfect 
crystals the result for the probability function of a 
dispersive double monochromator is 

P( Yo, ")'1, ak  ) = P2M exp (-{½(y,/DM) 2 

+[Ak (tan OM)/kDM]2}), (4.4) 

where DM is the Darwin width of the single mono- 
chromator divided by x/2. This alters the resolution 
from the expressions given earlier. In particular, the 
monochromator term in A' [(2.11), (2.15) and (2.17)] 
becomes 

[(tan 0M)2+ (tan O)2]/D 2 ,  

and the expressions for the resolution matrix elements 
a r e  

M~', = [(tan 20A)/D2A 

+ ( 1 / D ~ +  1/D~) tan 2 0 M ] / D ~  

M~2 = (tan 20M +tan 20A --2 tan OA tan O ) / D 2 D  2 

+(tan  2 0M)/D 4 (4.5) 
x 2 2 2 

M 2 2  -"  ( 2  tan 0 - t a n  OA) / D ~ D A .  

(a) 

(b )  

(c) 

Fig. 11. (a) A non-dispersive double monochromator. (b) A dis- 
persive double monochromator. (c) A four-crystal dispersive 
monochromator. 

The expressions for M~I, M~2 and M~2 for both a 
conventional and synchrotron source are unchanged. 

The main effect of the double monochromator in 
comparison with the results for a symmetric diffrac- 
tometer with a single monochromator occurs when 
OM = OA, because in this case M~I and M~2 are zero 
and the resolution elements are controlled by ao or 
or. This does not occur with the dispersive mono- 
chromator, because M~'1 and M~2 are then generally 
non-zero and the resolution is correspondingly greatly 
improved. With a single monochromator M~2 is 
zero in the focusing condition when 2tan 0 =  
tan 0A+tan 0M. With a dispersive double mono- 
chromator this condition is replaced by 2tan 0 = 
tan OA. The use of a dispersive double mono- 
chromator improves the resolution of the instrument, 
but this is coupled to a corresponding reduction in 
the intensity. 

Bent monochromators and focusing mirrors 

Bent monochromators and mirrors are frequently 
used in experiments to focus the X-ray beam onto 
small samples. Within the limits of our treatment of 
the resolution function, a bent monochromator is 
equivalent to a mosaic monochromator with a mosaic 
spread determined by the bend of the mono- 
chromator. The difference between a bent crystal and 
a mosaic crystal, apart from an improvement in the 
efficiency PM, is that the bent crystal reflects only 
those rays which will be incident on a small sample, 
whereas the mosaic crystal reflects rays which will be 
incident on a much larger area. This may be very 
important in optimizing the intensity but the resolu- 
tion is given by the formalism developed above for 
mosaic crystals. 

A similar effect occurs for a focusing mirror before 
the monochromator. This usually focuses the beam 
so that small samples can be used, but within the 
limitations of our formalism its effect can be incorpor- 
ated in the pre-monochromator collimation a0 and 

flo. 

5. Summary and discussion 

Triple-crystal X-ray diffractometers are essential for 
high-resolution studies of the X-ray scattering to 
study phase transitions, interfaces and surfaces. If 
the instruments are operated so that the properties 
of the monochromator and analyser determine the 
resolution, as is usually the ease, the resolution func- 
tion can then be evaluated in detail and the 
expressions are given in § 2. These are the main results 
of this paper and are useful for the interpretation of 
experimental results and for the optimization of 
experiments. The expressions are derived both for a 
conventional source where the resolution is deter- 
mined by the line width of the characteristic line, and 
for a continuous synchrotron source where it is deter- 
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mined by the pre-monochromator collimation or 
emittance of the synchrotron. The main approxima- 
tion made in the derivations is the Gaussian approxi- 
mation. This is certainly satisfactory for mosaic 
monochromators or analysers, and is at least a reason- 
able approximation for perfect crystals close to the 
centre of the resolution function. The effects of non- 
Gaussian tails are important in some experiments, as 
discussed, for example, by Ryan (1986). 

One aspect of the results which has not been con- 
sidered is the effect for a conventional source of a 
doublet such as Cu Ka~ and Ka2. The effect of this 
and its elimination has been discussed (Ryan, 1986) 
and the splitting between the peaks along Qo is illus- 
trated in Fig. 5. Clearly this splitting is much smaller 
than the longitudinal resolution za,, for small Q0 and 
with a graphite monochromator and analyser, but at 
large Q0 the resolution function will be two-peaked. 
This is clearly undesirable and resolution corrections 
are most readily made under conditions in which the 
Ka~ and Ka2 beams can be separated. 

In § 3 we discussed the effect of the analyser on 
measurements of the intensity. We were able to show 
that for samples with zero mosaic spread the intensity 
is simply dependent upon the angles if the intensity 
is measured by varying the wave-vector transfer 
parallel to Qo through the Bragg reflection. Any other 
path gives results which are a complicated function 
of the angle of scattering and of the resolution, and 
these effects are illustrated in Figs. 9 and 10. An 
alternative, and in practice the only satisfactory 
approach for mosaic crystals, is a two-dimensional 
scan of the wave vector over the Bragg reflection to 
give an adequate measure of the structure. In both 
cases, however, corrections for thermal diffuse scatter- 
ing etc. must be re-evaluated. 

Similar considerations apply to the measurement 
of the intensity of rods of scattering from surfaces 

and interfaces. The intensities are best measured by 
scanning the wave vector perpendicular to the rods 
to obtain the integrated intensity. This is then directly 
proportional to the scattering power of the rod. 

Although the resolution was evaluated with the 
assumption that the monochromator was a single 
monochromator, the formalism is readily extended 
to cope with double monochromators and asymmetri- 
cally cut monochromators. It is hoped that the 
expressions derived above will be useful in the inter- 
pretation of experimental results. We are planning a 
series of measurements to test the formalism and the 
usefulness of the Gaussian approximation for the 
central part of the resolution function and the results 
will be published in due course. 

I am grateful for many discussions of the resolution 
of triple-crystal diffractometers with T. Ryan, R. J. 
Nelmes, P. J. Mitchell and S. Bates. Financial support 
was provided by the Science and Engineering 
Research Council. 
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